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We present preliminary results of matrix elements of four fermion operators relevant to the determination of e 
and E ' / E  using staggered fermions. 

1. INTRODUCTION 

To calculate the matrix elements relevant to 
CP violation in Kaon decays it is important to 
use a lattice formulation which preserves (some) 
chiral symmetry. In the case of BK,  L3p'2), and 
B f / ' ) ,  the absence of chiral symmetry leads to 
mixing with wrong chirality operators, which in 
turn leads to  large discretization errors. The 
problem is far more severe for Bi1/2) due to mix- 
ing with lower dimension operators. Two lattice 
formulations that respect at, least part of the con- 
tinuum chiral transformations and hold promise 
for these calculations are domain wall/overlap 
fermions and staggered fermions. Each has its 
advantages and disadvantages. Renormalization 
of operators in the domain wall/overlap formula- 
tion is small enough that l-4oop calculations may 
be adequate, but the numerical simulations are 
w 100 times more costly. Staggered simulations 
are very efficient, but the I-loop renormalization 
constants for the simplest lattice transcription of 
operators are very large. The goal of this project 
is to find an improved staggered formulation for 
which perturbation theory is well-behaved. 

Here we present preliiniiiary estimates of B K ,  
BF'2) , B8 (3/2), and Bil/') using 140 quenched lat- 
tices (163 x64) att p = 6.0. This numerical simula- 
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tion is being done on the QCDSP supercomputer 
at Columbia University. To facilitate chiral ex- 
trapolations, we have used four values of quark 
mass: am, = 0.01, 0.02, 0.03, 0.04. The results 
are for gauge invariant staggered operators that 
lie in a 24 hypercube for which the l-loop renor- 
malization constants are now known [l]. 

2. BK 

We have used the calculation of BK as a test 
of our programs. The estimates shown in Fig- 
ure 1 agree with previous calculations [2-41 and 
it is worth mentioning that the l-loop calculations 
done independently in Ref. [l] reproduce the re- 
sults given in Ref. [5]. The figure shows a fit us- 
ing the form suggested by chiral perturbation the- 
ory, co -t- CI ( ~ M K ) ~  + c z ( a M ~ ) ~  ln(aMK)', with 
cg = 0.55(8), c1 = 0.06(25), and c2 = -0,60(38). 
Physical kaons correspond to ( ~ M K ) ~  M 0.06. 

In Figures 2 and 3, we compare the tree level 
and one-loop results for B p / 2 )  and BfI2) (de- 
fined in [2]). The l-loop tadpole improved renor- 
malization constants for the gauge invariant op- 
erators were recently calculated in [I]. We match 
to the continuum NDR scheme at q* = p = 
n/a.  The dominant contribution to (Of/2)) 
comes from 2-color trace staggered operator [P x 
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Figure 1. B K ( ~  = T / U ,  N D R ) .  

P][P x P ] I I ,  which also dominates the vacuum 
saturation contribution. Thus, even though the 
renormalization constants are large, there is a 
close cancellation and the B parameter receives 
a 5 10% 1-loop correction. On the other hand 
(O?/')) is dominated by the 1-color contraction, 
and the renormalization constants do not cancel. 
Consequently, even assuming q* = x/a, 1-loop 
perturbation theory is unreliable. 

These results can be compared against previ- 
ous calculations done using gauge non-invariant 
Landau gauge operators in Ref. [2]. The authors 
of Ref. [2] found significant systematic differences 
between results obtained using smeared and un- 
smeared operators. Choosing the same value of f i  
and urnp, we find that our results lie in between. 

4. B t l 2 )  

Accurate estimates of & / e  require measure- 
ments of matrix elements of QCD and elec- 
tromagnetic penguin operators, ( O r f 2 ) )  and 
(Of/2)) respectively, in the K + mr transition. 
Since these two contribute with opposite sign, 
leading to a significant cancellation, both need 
to be measured precisely in order to test whether 
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Figure 2. B p / 2 ) ( p  = r / a ,  N D R ) .  

the Standard Model explains the observed size of 
Re( d /E), 

Direct calculations of the K + mr ampli- 
tudes on the lattice are difficult [6] .  The sim- 
plest approach has been to assume chiral pertur- 
bation theory provides accurate relations between 
K + mr, K + T and K + 0 amplitudes [7]. In 
this method, which we use, the operator OFf2) 
has three types of contractions: eight, eye, and 
subtraction (to remove mixing with lower dimen- 
sion operators) [4,7]. Schematically, 

0;" = O;/'(Eight) + 0tf2(Eye) + 0;/2(Sub) 

In order to restrict the subtraction term to the 
single dimension four operator OSub = ( m d  - 
rn,)Sysd + (rnd + rn,),?d, we need to work with 
degenerate s and d quarks. For m, = m d  we can 
determine the coefficient a! of Osub by calculating 
the derivative of the K + 0 amplitude with re- 
spect to the strange quark mass. This derivative 
introduces two types of diagrams: (i) each strange 
quark propagator is replaced by its derivative, 
(ii) a disconnected diagram that arises from the 
differentiation of the fermion determinant. Both 
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Figure 3. Bf '2 ) (p  = n / a ,  N D R ) .  

terms can be estimated in the quenched theory. 
The calculation of a in Refs. [4,8] does not in- 
clude the disconnected contribution whereas the 
data labeled as ('normal" in Figure 4 includes it. 
An analysis of the contribution of the two terms 
will be presented in [9]. 

Recently, Golterman and Pallante have pointed 
out a subtlety associated with the quenched 
approximation using (partially) quenched chiral 
perturbation theory [lo]. They show that the 
usual quenched operators lead to matrix elements 
which have a different chiral expansion from that 
in the continuum. They propose an alternative 
quenched operator which does not have these 
problems. In practice this amounts to dropping 
certain contractions in the "eye" and "subtrac- 
tion" diagrams. 

We demonstrate in Figure 4 the difference in 
BG using the normal operator and that suggested 
by Golterman and Pallanto. The l-loop renor- 
inalization constants in the NDR scheme are from 
Ref. [l] and 1111. Our calculations show that the 
Golterman-Pallante operator enhances Bs by al- 
most a factor of two, which in turn would sig- 
nificantly increase the value of € ' / E  compared to 
results given in [4,8]. Thus the quenched approx- 
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Figure 4. B t ' 2 ) ( p  = n / a ,  N D R )  using the nor- 
mal operators and Golterman-Pallante operators. 

imation remains the most significant drawback of 
such calculations, which we hope to address in 
the future. 
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